Induction of Ethylene Biosynthesis in Nicotiana tabacum by a Trichoderma viride Xylanase Is Correlated to the Accumulation of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Synthase and ACC Oxidase Transcripts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Ethylene Biosynthesis in Nicotiana tabacum

Xylanase (EIX) from the fungus Trichoderma viride elicits ethylene biosynthesis in leaf tissues of Nicotiana tabacum cv Xanthi but not in cv Hicks. The increase in ethylene biosynthesis is accompanied by an accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), an increase in extractable ACC synthase activity, and increases in ACC synthase and ACC oxidase transcripts. Priming of leaves wi...

متن کامل

1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (...

متن کامل

Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato.

We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Ex...

متن کامل

Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.

A highly sensitive laser-driven photoacoustic detector responsive to [less than or equal to]2.1 nmol m-3 ethylene (50 parts per trillion [v/v]) was used for ethylene analysis. Dark-grown plants of Potamogeton pectinatus L. growing from small tubers made no ethylene. Exposure of shoots to white light, wounding, submergence in water followed by desubmergence, partial oxygen shortage, indole aceti...

متن کامل

The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase.

Ethylene is a plant hormone important in many aspects of plant growth and development such as germination, fruit ripening, and senescence. 1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO), an O2-activating ascorbate-dependent nonheme iron enzyme, catalyzes the last step in ethylene biosynthesis. The O2 activation process by ACCO was investigated using steady-state kinetics, solvent is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plant Physiology

سال: 1994

ISSN: 0032-0889,1532-2548

DOI: 10.1104/pp.106.3.1049